613 research outputs found

    Single-Cycle High-Intensity Electromagnetic Pulse Generation in the Interaction of a Plasma Wakefield with Nonlinear Coherent Structures

    Full text link
    The interaction of coherent nonlinear structures (such as sub-cycle solitons, electron vortices and wake Langmuir waves) with a strong wake wave in a collisionless plasma can be exploited in order to produce ultra-short electromagnetic pulses. The electromagnetic field of a coherent nonlinear structure is partially reflected by the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the coherent nonlinear structure. This process is illustrated with two-dimensional Particle-in-Cell simulations. The considered laser-plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.Comment: 11 pages, 11 figures. Submitted to Phys. Rev.

    Dynamics of relativistic solitons

    Full text link
    Relativistic solitons are self-trapped, finite size, electromagnetic waves of relativistic intensity that propagate without diffraction spreading. They have been predicted theoretically within the relativistic fluid approximation, and have been observed in multi-dimensional particle in cell simulations of laser pulse interaction with the plasma. Solitons were observed in the laser irradiated plasmas with the proton imaging technique as well. This paper reviews many theoretical results on relativistic solitons in electron-ion plasmas.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Three Dimensional Relativistic Electromagnetic Sub-cycle Solitons

    Full text link
    Three dimensional (3D) relativistic electromagnetic sub-cycle solitons were observed in 3D Particle-in-Cell simulations of an intense short laser pulse propagation in an underdense plasma. Their structure resembles that of an oscillating electric dipole with a poloidal electric field and a toroidal magnetic field that oscillate in-phase with the electron density with frequency below the Langmuir frequency. On the ion time scale the soliton undergoes a Coulomb explosion of its core, resulting in ion acceleration, and then evolves into a slowly expanding quasi-neutral cavity.Comment: 5 pages, 6 figures; http://www.ile.osaka-u.ac.jp/research/TSI/Timur/soliton/index.htm

    Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime

    Full text link
    The Sweet-Parker layer in a system that exceeds a critical value of the Lundquist number (SS) is unstable to the plasmoid instability. In this paper, a numerical scaling study has been done with an island coalescing system driven by a low level of random noise. In the early stage, a primary Sweet-Parker layer forms between the two coalescing islands. The primary Sweet-Parker layer breaks into multiple plasmoids and even thinner current sheets through multiple levels of cascading if the Lundquist number is greater than a critical value Sc≃4×104S_{c}\simeq4\times10^{4}. As a result of the plasmoid instability, the system realizes a fast nonlinear reconnection rate that is nearly independent of SS, and is only weakly dependent on the level of noise. The number of plasmoids in the linear regime is found to scales as S3/8S^{3/8}, as predicted by an earlier asymptotic analysis (Loureiro \emph{et al.}, Phys. Plasmas \textbf{14}, 100703 (2007)). In the nonlinear regime, the number of plasmoids follows a steeper scaling, and is proportional to SS. The thickness and length of current sheets are found to scale as S−1S^{-1}, and the local current densities of current sheets scale as S−1S^{-1}. Heuristic arguments are given in support of theses scaling relations.Comment: Submitted to Phys. Plasma

    Review of analytical instruments for EEG analysis

    Full text link
    Since it was first used in 1926, EEG has been one of the most useful instruments of neuroscience. In order to start using EEG data we need not only EEG apparatus, but also some analytical tools and skills to understand what our data mean. This article describes several classical analytical tools and also new one which appeared only several years ago. We hope it will be useful for those researchers who have only started working in the field of cognitive EEG

    Radiation Pressure Dominate Regime of Relativistic Ion Acceleration

    Full text link
    The electromagnetic radiation pressure becomes dominant in the interaction of the ultra-intense electromagnetic wave with a solid material, thus the wave energy can be transformed efficiently into the energy of ions representing the material and the high density ultra-short relativistic ion beam is generated. This regime can be seen even with present-day technology, when an exawatt laser will be built. As an application, we suggest the laser-driven heavy ion collider.Comment: 10 pages, 4 figure

    Lorentz-Abraham-Dirac vs Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions)

    Full text link
    When the parameters of electron - extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crutially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possess unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.Comment: 14 pages, 5 figure
    • …
    corecore